Skip to main content

High strength concrete

1.0 High strength concrete are used in concrete structures it have a compressive strength more than 40MPa, it improves the structural performance of the structure by producing dense concrete, more durable and higher load capacity concrete, reduce the size of concrete members and saving costs. The potential broblem of using high strength concrete is increasing thermal cracking, increased thermal strains, decrease ductility of concrete and decrease fire restance

2.1 MATERIALS 
.1 Cement Type: Type I Normal, and type V (Sulphate Resistant), Type IV low heat of hydration, as per E.S.S. 373, E.S.S. 541, E.S.S. 583, E.S.S. 2149, ACI 318, ASTM C 150, ASTM C 595, and ASTM C 845 . .2 It is anticipated that one or more supplementary cementing materials will have to be used in the concrete to produce a mix with acceptable fresh and hardened concrete properties and acceptable thermal characteristics during hardening. The materials will be one or more of the following
a) Granulated blast furnace slag, b) Fly-ash, c) Silica fume.

2.2 Aggregates .
2.2.1  Nominal Size of Coarse Aggregate: 5 mm to 20 mm. Use pea gravel (5 mm to 10 mm) where concentration of reinforcement requires the use of a smaller diameter aggregate, as per ACI 318 and ASTM C 33. 
2.2.2  Fine Aggregate: Natural and conforming to ASTM C33 Standard Specification for Concrete Aggregates modulus shall be 2.9 to 3.1. Quality Control of Supplementary Cementing Materials: Test data to the satisfaction of the consultant shall be obtained from each delivery and this data shall be supplied to the independent inspection company prior to its use. The mode of communication between the concrete supplier and the independent inspection company shall be agreed prior to the supply of any of these materials. .

3.0 Admixtures .
3.1 Admixtures: Air entraining agents, water reducing admixtures, or superplasticizers that have been tested in accordance with ACI and ASTM requirements and which have been successfully used in Cairo. Admixtures shall conform to E.S.S. 1899, ACI 318, ASTM C 260, ASTM C 494, ASTM C 1017, ASTM C 618, ASTM C 989, ASTM C 1240

COOLING OF CONCRETE 
.1 In summer months the cooling of high strength concrete is required to control the generation of heat in the concrete and to meet the requirements of this specification. Experience indicates that the addition of ice to high strength concrete is not adequate to meet the maximum concrete placing temperature and that other methods such as liquid nitrogen cooling are required. The concrete supplier shall provide full details to the Consultant of the concrete cooling method proposed for use and shall demonstrate to the satisfaction of the Consultant that the proposed method is effective.

CURING 
.1 Cure all high strength concrete by the application of curing compound. 
.2 Apply curing compound to all surfaces as soon as the members are stripped. 
.3 During hot weather, provide continuous water curing, in addition to curing compound, for a period of approximately 48 hours or such time as is required until the temperature of concrete begins to fall. In this case, water curing is used to prevent excessive rise in temperature


Comments

Popular posts from this blog

KEYSTONE RETAINING WALL

 Introduction:- Keystone is a mechanical stabilized earth wall MSEW which used to retain soil from one side, it's less cost than concrete walls. Material  1-Keystone Blocks 2-Fiberglass Pins 3-Geo-grids 4- Back-filling Material 5-Concrete pad  Different type of Geogrid:  TT045 can carry load till 45KN/m. TT060 can carry load till. 60KN/m. TT090 can carry load till 90KN/m.  TT120 can carry load till 120KN/m.  TT160 can carry load till. 160KN/m. Method Statement  1) Place HDPE Geogrids on top of the compacted soil. HDPE Geogrids are installed from the front on top of the fiber glass pins (which penetrates the grid) and from to back, Geogrids are fixed horizontally using a steel bars.  2) Lay down the precast concrete units on top of a PC foundation at a level that is a Minimum of 5% from the wall height and reach 10% (buried height) to prevent any lateral movement .  3) Put the layers of Geotextile.  4) Backfilling using fine gravel behind the wall for a distance of 50 cm, max size o

‎انواع الخوازيق وطرق تنفيذها

تستخدم الخوازيق الخرسانية في الأعمال الإنشائية.  1- خوازيق بنوتو BENOTO يتم الحفر باستخدام ماسورة مؤقتة او دائمة لسند جوانب الحفر ثم انزال الحديد والصب يستخدم في التربة المسامية الحاملة للمياه في حالة التربة المتماسكة يمكن استخدام النتونيت في سند جوانب الحفر خوازيق شريطية DIAPHRAM WALL 1- تجهيز وصب حائط الدليل 2- تجهيز معلق البنتونيت 3- الحفر 4- وضع البنتونيت 5- انزال الحديد 6- صب الخرسانة 2- الخوازيق الساندة 1- خوازيق متجاورة  adjacent piles    2- خوازيق متلاصقة  contiguous piles  3- خوازيق متقاطعة Secant piles   *يمكن ان تكون الخوازيق المتقاطعة كلها من الخرسانة المسلحة مع مراعاة الغطاء الخرساني اذا تطلب التصميم ذلك 4- خوازيق ستراوس يتم التنقيذ بالحفر اليدوي او الميكانيكي كالاتي 1- تغويص الماسورة بالقطر المطلوب حتي تصل ال العمق المطلوب 2- صب الخرسانة حتي منسوب اسفل الحديد 3- انزال الحديد 4- استكمال الصب 5- سحب الماسورة *تصمم كخوازيق ارتكاز فقط *تستخدم لاقطار حتي 50سم واطوال 20مترميكانيكيا  *لايقل عدد تجارب التحميل عن 1 لكل 100 خازوق  5- خوازيق ابرية mic

Edge Distance for Bolts as per Egyptian Code

Bolt grades Bolt Grade 4.6 4.8 5.6 5.8 6.8 8.8 10.9 Fy t/cm2 2.4 3.2 3.0 4.0 4.8 6.4 9 Fu t/cm2 4.0 4.0 5.0 5.0 6.0 8.0 10.0   Ordinary Bolts High strength bolts *Revit have two grades:   grade 1    Fu 5t/cm2, grade2 Fu 6t/cm2 e1= end distance                                                                                                        e2= edge distance                                                                                              s= spacing